W) Check for updates

Simulation
>

Simulation: Transactions of the Society for
Modeling and Simulation International

Special Issue

A test-driven methodology for © The Auhor(9) 2024
. . DOI: 10.1177/00375497241292347
designing robot controllers and fourmals sagepub comfomelsim

.) . . SSage E=
simulators using enzymatic numerical

P system models

Radu Traian Bobe'(®, Marian Gheorghe?,
Florentin Ipate' and lonut Mihai Niculescu'

Abstract

The design of model-based robot controllers or simulators requires the use of adequate approaches for selecting the
models that fit their functions and intended behavior. In this paper, we propose a methodology based on a test-driven
method for designing robot controller simulators that use enzymatic numerical P system models. By applying this metho-
dology, different instances of the model are obtained by tuning different aspects, such as the structure, functions, and
parameters of the model based on a set of testing scenarios. Another set of tests is used to validate the model instances
obtained. The paper, through the methodology proposed, provides an effective way of combining modeling, simulation,
and testing in conjunction with a set of tools associated with them.

Keywords
Membrane computing, numerical P systems, enzymatic numerical P systems, robot controllers, simulation, search-based
software testing

I. Introduction Software testing is an essential part of the development
process of applications, serving as a fundamental mechan-
ism for ensuring their functionality, safety, and compli-
ance to requirements. As software applications tend to
become indispensable in solving real-life problems, testing
plays a pivotal role in identifying undesired behavior. An
approach to explore the complex search spaces inherent in
modern software systems and discover the unsatisfactory
functionalities is search-based testing.'** Search-based

In recent years, the evolution of membrane computing in
the realms of computer science, economics, and biology
has sparked interest and innovation. Defined as a branch of
an area that investigates computational models inspired by
the nature processes, called natural computing, membrane
computing was introduced by Paun' over 20 years ago.
This biological-inspired computational paradigm investi-

gates models that derive from the structure of a living cell. testing has expanded its applicability in autonomous sys-

As the results were promising, the.SIgIIIﬁCEmt milestones yerng and a relevant tool for generating tests in this area is
of the first decade of research in this field were presented A 1 bicGen 2

in Paun et al.? Moreover, the main classes of a membrane
systems were involved in real-life scenarios.’

Different variants of P systems have been proposed,
such as tissue P systems,* spiking neural P systems®™'! or
P systems with active membranes.'>"?

Numerical P systems have been introduced with the |))

. £ delin nomi henomena. in natur Department of Computer Science, Faculty of Mathematics and

?lm. of ‘mode g. cecono . s 1‘13 enomena, a a ure- Computer Science, University of Bucharest, Romania
inspired computational setting. ™ Later on, an extension of 2Faculty of Engineering and Informatics, University of Bradford, UK
this model, called enzymatic numerical P system (EN P
system),'® was introduced as being adequate for modeling ~ Corresponding author:

16-18 19 : . Radu Traian Bobe, Department of Computer Science, Faculty of
robot controllers. PeP,”” a simulator for running EN P . ! o

R . R i Mathematics and Computer Science, University of Bucharest, Str

systems, has been provided and utilized in various academiei 14, 010014 Bucharest, Romania.

controllers.'®17:2°

In this paper, we propose a methodology for building
simulators for a robot controller based on EN P system
models. Model instances are built using the formalism pro-
vided in Pavel et al.'> The development process of

Email: radu.bobe@s.unibuc.ro

2 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

designing the model instances is dictated by a number of
scenarios aimed at highlighting the behavior of each model
version. In some sense, our approach is similar to “‘test-dri-
ven development,”?* improvements being added only after
studying the performance of the models during the previ-
ous tests. The behavior of the controller designed for an
educational robot, called E-puck,25 is analyzed in a virtual
environment using Webots,® a robot simulation tool.

This paper is an extended version of the article®” pre-
sented at EAI SIMUtools 2023 conference.”® Compared to
the initial article, we introduced and applied a methodol-
ogy to determine the sensor parameter values (weights)
based on a linear regression algorithm. This heuristic led
us to develop a new model which is presented in detail in
this extended version. We also extended the simulation
phase, adding an experiment consisting of 25 test cases,
aimed at proving the validity of the newest version of the
model, compared to the previous ones.

The paper is structured as follows: The
section introduces the definition of EN P systems along
with the fundamentals of regression and search-based test
generation applied in robotics. The ‘““Methodology
Description and Research Environment™ section presents
the working methodology, explaining each step of our
experimental approach. The ‘Enzymatic Numerical P
System Models” section describes different instances of
EN P system model that we designed, while the
“Simulation Results” section illustrates the simulation
experiments and presents the results in a comparative
manner. In the end, the “Conclusions and Future Work”
section states the conclusions and future work.

¢cPreliminaries»s

2. Preliminaries
2.1. EN P system definition

In order to facilitate understanding of the methodology
expounded in this paper, along with its operational frame-
work, we find it useful to introduce the EN P system defi-
nition from the original article,”’ along with the first three
instances of the model, presented in the ‘“Enzymatic
Numerical P System Models” section.

The EN P systems are special classes of membrane sys-
tems, that share with the rest of the models only the mem-
brane structure, in the form of a tree. The compartments
contain variables instead of objects and their values are
processed by programs replacing the rewriting and com-
munication rules.'> As in any membrane system, the com-
partments are delimited by membranes. Subsequently, we
use them interchangeably. A global clock controls the sys-
tems through discrete time units.

The EN P system is defined by the tuple:

H:(m,H,M,(Varl,Prl,Varl(o)), (1)
.oy (Vary, Pry, Var,,(0)))

where

e m=1 is degree of the system IT (the number of
membranes);
H is an alphabet of labels;
(1 is membrane structure (a tree);
Var; 1s a set of variables
Lhl1<i<m

® Var; (0) is the initial values of the variables from
region i, 1 <i < m;

e Pr; is the set of programs from membrane
L1<is<m

® The program Pry, ;, 1 < [; < m; has one of the fol-
lowing forms:

Non-enzymatic:

from membrane

Fr, (X1 oo Xki) — crilvi T coifva +

-t cm,,i|vnu

(2)

where F ;(x1;, ...,xt;) 1is the production function,
crivi + cailva + -+ + cw,.ilve, is the repartition proto-
col, and xy ;, ...,x,; are variables from Var;. Variables
Vi,V2...Vy, belong to the compartment where the pro-
grams are located, and to its upper and inner compart-
ments, for a particular compartment i.

Remark 1. If a compartment contains more than one
program, only one will be non-deterministically chosen.

2. Enzymatic:

Fr (X oo ooxni)|e, — crilvi T coifva +

-+ cm,, i|vm,-

(3)

where e; is an enzymatic variable from Var;, e; &
{x1.i5 - .»Vm; ;. The program can be applied
at time ¢ only if:

. »xk,ia Vi, ..

e; >min(xy (1), ..., xx. (1)) (4)

Remark 2. The system evolves in time by executing
all the programs that meet condition 4 (the enzymatic
control). This happens in parallel in all compartments.

When the program is applied by the system at time
t =0, the computed value is as follows:

q1,.i(t) = Fll,i(mé% o Xki(t))

jZIQf,i

(5)

representing the unitary portion that will be distributed to
the variables vy, ...,v,, proportional to coefficients
Cl,i» ---»Cm,i» Where ¢;; € N* and the received values
willbe q;, (f) - c1.is - o q1,.i(2) - Cmy. i

Bobe et al.

Remark 3. The value of each of the variables from
time t — 1 occurring in the production functions is con-
sumed (reset to zero) and its new value is the sum of the
proportions distributed to variable through the reparti-
tion protocols, if it appears in them, or remain at value
zero if not.

2.2. Regression applied in robotics

The interdisciplinary nature of the robotics field is
undoubted considering the need of creation, design, and
use to automate tasks of increasingly complex difficulty,
designed to simplify people’s daily lives. Industries like
automotive, healthcare, logistics, or agriculture are just a
few of areas where the use of robots has led to the optimi-
zation of certain processes and increased their safety. Due
to the endowing with sensors, actuators, and computa-
tional systems, robots are capable to perceive and interpret
environmental conditions, making decisions and guiding
themselves in real time. All these actions are possible by
interconnecting the robot components through the core
element, called the robot controller. The robot controller is
responsible for interpreting external influences and making
decisions based on the information provided by the sen-
sors. The importance of having a robust implementation of
controller is all the greater as robotics revolutionizes
industries by boosting the safety of the systems.

In this paper, we discuss the use of a robot controller
based on EN P systems designed to avoid obstacles and fol-
lowing roads of different complexities. In fact, passing a
curved road can be treated as an extension to an obstacle
avoidance scenario, since the road borders can be interpreted
by the proximity sensors of the respective robot as obstacles.

As mentioned above, designing the robot controller is
an essential step in order to obtain the expected behavior.
In our initial approach,”’ we used a model that associates
proximity sensor values with constant parameters (called
weights) that were empirically chosen in order to obtain
the desired performance. In our current approach, we pro-
pose a parametrization based on linear regression. Before
getting into the details, let us introduce some fundamental
concepts regarding regression.

In a regression problem, the objective is to discover a
function that efficiently models a hidden function that rep-
resents the relationship between input and continuous out-
put, trying to obtain the closest possible approximation.
The goal can be also interpreted as predicting the depen-
dent variables based on independent variable values.*'
Simple linear regression is a regression model with a sin-
gle independent value, while multivariate linear regression
(MLR)** predicts the result of an answer variable, using a
number of independent variables. The expression that
describes this definition is the following:

y=Bypt B xi+ - TP, x,T€ (6)

where y is the dependent variable and x;, 1 < i < m, the
independent variables. 3 parameters are fixed real numbers
(weights), while € is the random error term, with a mean of
0 and constant variance, used to express the effect of ran-
dom factors on dependent variable.

Regression is used in two different areas. First, regres-
sion analyses are usually applied for prediction and fore-
casting. The main types of supervised learning problems>”
include regression and classification problems, the major
difference between them being the discrete or continuous
character of the output. Alternatively, regression can be
used to determine relations between the independent and
dependent variables. This analytical technique is widely
used in fields such as statistics and economics,** but has
considerable applications even in robotics, as the informa-
tion extracted from regression analysis can contribute to
decision-making processes.

Upon closer examination, considering the implications
of regression in the field of robotics, we can observe signifi-
cant progress. For example, Chavez-Olivares et al.>> pre-
sented seven identification schemes based on different
regression models, as a procedure to obtain the identifica-
tion of the parameters of a robot manipulator. Furthermore,
as the performance of robots in performing certain tasks
increases, the internal design of robots grows in complexity.
A survey paper regarding the use of regression algorithms
in the context of learning mechanical models of robots has
been published by Olivier Sigaud, Camille Salaiin, and
Vincent Padois.*® This topic is also presented in depth by
D. Nguyen-Tuong and J. Peters.>’ Analyzing all the pre-
sented methods, it can be concluded that modeling robot
systems using regression is still a challenge, improvements
in performance of the algorithms still needed to be done.
The dynamic behavior and core capabilities of a robot are
characterized by the process of parametrization. In robotics,
it consists of specifying the parameters that govern the
functionalities of a robot. This approach is exemplified in
estimating the parameters of an industrial robot for control-
ler design purposes.*® Lizana et al.*® issued different para-
metrization methods of phase change modeling, including
static linear transition using linear regression.

In the approach outlined in the present work, we employ
linear regression to identify appropriate values for the prox-
imity sensors’ weights of a robot controller. As these con-
stant values were chosen in an empirical manner in the
previous work, we aimed to determine the relationship
between one dependent value (the speed of the wheel) and
six independent values (proximity sensors’ values). In-depth
details regarding the implementation and working methodol-
ogy will be elucidated in the subsequent dedicated section.

2.3. Search-based test generation in robotics

Robust testing is critical in the realm of software-
controlled complex systems, such as autonomous vehicles,

4 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

smart grids, or healthcare monitoring systems, ensuring
reliability in interlinked ecosystems. The rapid develop-
ment of this field has led to the discovery of innovative
methods for predicting behavior*” however, the complex-
ity of the scenarios that must be considered remains high.
As the diversity of cyber-physical systems increases, mod-
ern and efficient testing approaches are needed. An impor-
tant innovative method to achieve this was model-based
testing, where the test specification is derived from both
the system requirements and a model that describes
selected functional and non-functional aspects of the sys-
tem under test.*'*?

Search-based software testing®® has contributed signifi-
cantly to overcome common testing problems, using meta-
heuristic optimizing search techniques, such as genetic
algorithms.** Search-based test generation has been
applied in virtual scenarios to test cyber-physical systems,
whose testing is not feasible to be done in a real environ-
ment. Arrieta et al.*> proposed a search-based approach
for cyber-physical systems’ test generation, implemented
on top of Non-dominated Sorting Genetic Algorithm II
(NSGA-II), a commonly applied multi-objective algo-
rithm. Search-based software testing can also be integrated
with complementary techniques, with a pertinent example
being the work of Togelius et al.,*® who combined it with
procedural generation. Gambi et al.*’ used search-based
software testing combined with procedural generation for
testing self-driving car software.

Resuming our focus on testing cyber-physical systems,
particularly within the domain of robotics, virtual test gen-
eration using different methods is essential in order to cre-
ate different challenging scenarios for the robot.*® In this
paper, we used roads tests generated with a search-based
tool that will be detailed in the next section, having diverse
levels of difficulty, dictated by the number and contour
characteristics of the curves.

3. Methodology description and research
environment

This section presents the methodology behind our
approach, its key components, and main functions. The
tools supporting our approach are introduced and their
roles in implementing the methodology described.

Now that we have introduced the tools that make up the
research environment, we can examine the methodology
used in our experiments. First, the scope of this paper is to
build simulators for a robot controller based on EN P sys-
tems model.

We used road spines generated with AmbieGen to cre-
ate roads with a specified width. In addition to the tool-
generated roads, we also used manually created tests, such
as circular arena with obstacles, corridors, and a square,
created in Webots.

Controller
75
ebO[S
PeP
Model Tools
(e
&
P»‘do\ S
E
Test Scenarios

Figure I. Flow diagram.

The methodology utilized in our approach is based on
some key components and interactions among them. A
visual representation of the main aspects of our proposed
methodology is presented in Figure 1.

The components are: a robot controller, a formal model,
which is the core part of the controller, and test scenarios
aimed to check the functionality of the controller and vali-
date its behavior. We rely on a test-driven design for the
methodology, whereby the test sets guide the process of
building the controller, adapting accordingly the formal
model.

Now, we describe the functions of each component,
also revealing the interactions among the components.

The robot controller is the core component of the meth-
odology. This controller is meant to equip an E-puck
robot.> An important aspect of our study is the fact that
the robot has two motors attached to the body along with
two wheels; the speed value is changeable and handled by
the controller. It also includes eight infrared proximity
sensors placed around the body and a GPS attached to the
turret slot in order to assess the coordinates. The controller
takes the proximity sensor values from the robot and,
using the formal model, transforms them into velocities
for both motors of the robot. To gain a clearer understand-
ing of how the controller operates with the mentioned
data, next we present the pseudocode version of the main
loop of robot controller, defined by us in our previous
work.*

Instead of using the controller directly on the E-puck
robot, we illustrate its behavior and also the methodology,
by using a simulator, built with Webots, a robot simulation
tool, allowing to construct complex environments.*®

The controller’s backbone is a formal model, in the
form of an EN P system. As the controller design, and
implicitly the model, is guided by test scenarios, their
structure and functionality may change as a consequence
of adjustments resulting from the results of these tests. The

Bobe et al.

Algorithm | Simulation steps performing algorithm
|: repeat

2: fori= | to number of sensors do

3: sensor membrane(i) < value(j)

4: run one simulation step

5: read Iw, rw from P system

6: leftMotor — Iw

7: rightMotor — rw

8: until the end of the road or E-puck goes out of the road

model and the controller may evolve. In our case, we have
obtained a total of five models—their precise definitions
appear in the next section, but here we only mention that
we start with a model introduced by Florea and Buiu.*°
Motivated by the aim to obtain not only favorable test out-
comes, but also the most natural behavior of the robot, a
new model is refined from the previous model. It is impor-
tant to mention that evolving a model may involve chang-
ing its structure, functionality, by changing the rules, and
parameters—all these are presented in detail in the next
section.

EN P system models are simulated (executed) with a
tool called PeP,' allowing to define them in a domain-
specific language and then execute the systems in accor-
dance with the semantics of the models. The robot control-
ler is then integrated with the Webots simulator.

Below we describe the way the parameters are adjusted,
the changes to structure and functionality will be presented
when the models will be introduced in the next section.
Before presenting the parameters’ adjustments, we present
the test scenarios.

To strengthen the testing phase, which in our methodol-
ogy plays a crucial role not only in validation but also in
defining new model variants, we used different test cases
in two stages: first, to observe the limitation of each previ-
ous model instance and based on the results to design a
new one and second, to validate the solutions obtained
after the first stage. Test scenarios are divided into areas
the E-puck robot is meant to go through and roads of dif-
ferent types and sizes. For the first set of test scenarios, dif-
ferent Webots visual objects (shapes)®® are used which are
populated with obstacles, by using a special mechanism,
called PROTO,* that allows to build special objects within
an environment. Roads generation is achieved by using
AmbieGen, an open-source tool relying on evolutionary
search methods for the generation of test scenarios.?*~°
The software is written in Python and uses evolutionary
methods”! and multi-objective algorithms for search-based
test generation.** A complete description of these test sce-
narios and the results of the validation process are pre-
sented in the ““Simulation Results” section.

In the initial phase, each sensor value had a constant
parameter, called weight, which was empirically chosen to
obtain the desired conduct. After refining the initial model,
obtaining new models with more accurate behavior, our

last model uses a parametrization method in order to deter-
mine a value for these weights. To achieve this, we used a
linear regression algorithm implemented in Python.

As mentioned in the ‘“‘Regression applied in robotics”
subsection, we aimed to determine the relationship between
the speed of the wheel and proximity sensors’ values, using
a linear regression with one dependent value (the speed)
and six independent values(sensors values). Prior to the
application of the algorithm, relevant data collection was
needed. To accomplish this, we used an obstacle avoidance
controller’® presented in Webots documentation web page.
This controller gets the sensors’ values in a similar way to
our controller, but detects if a collision occurs using the
value returned by a distance sensor and comparing it to a
threshold, defined as a constant float value. Finally, the
information about collision detection is used to actuate the
wheels, modifying speed according to obstacles.

Understanding the operational mode of this control-
ler, we applied it on our test scenarios, taking at each
step of the simulation the sensor values as well as the
actual speed of the motors. It is important to mention
that we used just six out of the eight proximity sensors
that E-puck is equipped with, because we needed just the
data from the sensors placed radially at the frontal part
of the robot.

Relevant data were extracted from the circular arena with
obstacles, as all the sensors were triggered during the experi-
ment. The data collected were then introduced in Python, in
the linear regression script, obtaining parameter equal in val-
ues, but of opposite sign, for left and right wheel.

Using the weight values obtained in the above pre-
sented way, we designed our last model, entitled in the
next section as Linear Regression-Based Model. The
model exhibits a visibly improved structure compared to
the previous one, being much simpler and easier to under-
stand, utilizing the parameter values returned by regres-
sion and not empirical values.

Now, we briefly describe how the tools mentioned so
far are integrated:

o PeP simulator contains the EN P system model

o The model is integrated with the E-puck controller
via PeP

o AmbieGen provides the test generation scenarios
with roads as .json files, plus test outcome, maxi-
mum curvature coefficient, and so on.

o In the Webots graphic interface, the simulation can
be visualized on inputs provided by AmbieGen.
More details about the tools and the way they work
together are available from Bobe et al.?’

Remark 4. All the models used in this experiment and
test scenarios along with the results are available in our
GitHub project.””

6 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

4. EN P system models

This section presents our different instances for the model
used to control the robot. As the linear regression-based
model is created following an analysis of experimental
results and the drawbacks of the previous model structure,
we proceed to introduce in the beginning the way we
obtained the instances of the model as well as the prior
three versions, as extracted from the conference article.?’

The controller receives data from proximity sensors,
that measure distances to obstacles from the environment,
in order to determine the direction of movement of a dif-
ferential two-wheeled robot, E-puck, in our case.

The proximity sensor has a range of 4 cm; if the obsta-
cles are further than this limit the sensor returns the value
of 0. The proximity sensors are placed on the left and right
side of the robot in the direction of its movement at differ-
ent angles.

The basic model was taken from® and adapted to make
a rotation move when an obstacle is near, in order to avoid
it and continue the movement. The equations that calculate
the linear and angular velocity are shown below:

leftSpeed = cruiseSpeed + Z weightLeft; - prox; (7)
i=1

rightSpeed = cruiseSpeed + Z weightRight; - prox;

i=1
(8)

The lefiSpeed and rightSpeed are the speeds of the
two wheels of the robot, while # is the number of sensors.
Each sensor has constant weight values, empirically cho-
sen to conduct the robot to the desired behavior. This basic
model encountered considerable difficulties to pass the
road tests generated by AmbieGen, being capable to move
without hitting the margins just on straight roads or very
little curved roads. The model was formally described and
more experiments have been done in our previous work,*
where it is referred as I1y,.

Considering the limitations of IT,,,, the model we pres-
ent next is an improvement on the first one.

4.1.

Analyzing the initial model, we observed that the speed of
the wheel on the side with an obstacle increased reported
to weights. Thereby, this caused a sort of rotation in the
opposite direction of the obstacle but not sufficient to pass
the test.

The main change of our model was to introduce the
compartment w, calculating the product of the travel speed
and the sum of the weights. In this way, after rotating in
the opposite direction when detecting an obstacle, the

Basic model with rotation

robot will continue the test, moving forward with a con-
stant velocity. This is certainly an improvement, especially
when the robot is challenged on roads, but as presented
next, there were still some issues that aimed us to intro-
duce another model.

Let us consider the following function:

I, ifx=0
0, otherwise

7t = ©)
This function will be used in the equations describing
the behavior of the model and in the production functions
from the programs.
The equations describing the behavior are as follows:

n
weightLeft = Z weightLefi; - prox; (10)
i=1
weightRight = Z weightRight; - prox; (11)
i=1
leftSpeed = cruiseSpeed - weightLeft (12)
+ f(weightlLeft) - cruiseSpeed
rightSpeed = cruiseSpeed - weightRight (13)
+ f(weightRight) - cruiseSpeed
The model is defined as follows:
Iy, = (m.H, w, (Vary, Pry, Var,(0)), (14)
oo, (Vary, Pry,, Var,(0)))
where
* m=3k+3,k=06
e H={s,w,s.}U Uf{: e siwiks
b M’ = H[H.sl []wl]cl e H]sl‘ []WA]CA []s(,]w]sg
o Var, = {x5,x,}, Var, = {xy, %y, e},
Vars, = {xs.}, Vare, = {xc, s Xe,, 5,0 Xeiwis Xeyyw,s €6, }o
1<i<k,

Varg, = {x.i}, 1 <i<k,
Vary, = {%w, w»>Xww» €w }> 1 <1< k;
® Var;(0)=0,1<i<m
Pry={0-xg -x;, — llxg, + 1|x, };
Prw = {xsc 'xw, +f(xw,) 'xsc|e“,. - 1|xwu
X5, Xw, T f(0,) - X le, — 1, }3
Pry, = {x;, — 1lx. };

Prci = {xﬁ/,s/ "X, w st

€c; - 1

xc,-.s,. 'x(’,-,w, e -XS,-}7 1 < i < ka
Pry, = {3x,,; — g, + e s + Uxers, 1

1<i<k Pry, = {2x»‘fi,w;’ew,- — 1

—]
<

Xwi, wy

+ e, 2%, e, — l‘xwhwr + Lxe,w, }s

1<i<k

Bobe et al.

The meaning of the variables from the model is the
following:

o Xy and x,, from the region s represent leftSpeed and
rightSpeed, the sum of the products are accumu-
lated in s after applying the rules from the mem-
branes Pr.,, where | <i < k;

o X, from the compartment s, is cruiseSpeed;

o each pair of weights, weightLeft; and weightRight;,
resides in the regions w;, 1 < i < k;

o for each proximity sensor, prox;, a compartment is
defined, namely s;, containing a single variable,
Xs,, i 1<i< k,

o the products are calculated by two distinct pro-
grams, weightLeft; - prox;, and weightRight; - prox;,
1 < i < k, in the compartments c;.

As presented in EN P system definition, all the programs
that satisfy the enzymatic condition are applied in each
simulation step. Moreover, according to Remark 3, we
opted to reset the values of the speeds x,, and x,, by adding
them multiplied by zero in the production function from the
region s. In this way, the previous values of leftSpeed and
rightSpeed are consumed at each step. This approach will
also be used in the models presented later in this paper.

4.2. Refined model

During the test phase of the above presented model, we
observed that even though the robot avoids the obstacles
(road borders, in case of generating roads with
AmbieGen), it tends to have a ‘“‘zig-zag” motion going
from the proximity of a border to the proximity of the
other one. Considering this, an immediate adjustment was
to recenter the robot after avoiding an obstacle and reach-
ing the center of the road, so the robot will go straight
until it encounters a new obstacle.

We made this adjustment by introducing a new mem-
brane, called Direction. The membrane has seven vari-
ables, called directionLeft, directionRight, angle, state,
distance, angleStep, and distanceStep, which will be
detailed when giving the formal definition of the model.
In order to obtain the desired behavior, we used differen-
tial drive kinematics equations.”* The state variable aims
to reproduce a finite state machine inside the production
function of the membrane, with the following states:

1. state 0—the robot is moving in a straight line

2. state 1—the robot is moving in the presence of an
obstacle

3. state 2—the robot is moving to approximately the
center of the lane

4. state 3—the robot is recentering on the lane.
Before introducing the mathematical definition of
the described model, we firstly defined four

functions needed in the production functions, as
stated in Table 1.

Also, we used the constant len which represents the axle
length of the robot. For E-puck this is equal to 52 mm.
The model is defined as follows:

Iy, = (m,H, w, Vary, Pri, Var,(0)),

...,(Varm,Prm, Varm<0))) (15)
where
e m=3k+4,k=06;
e H={s,d,ws}U Uk,-zl Ci, iy Wi;
b o= H[[Hvl le]cl et H]Sk HWk]Ck []Sr]W}d]S;
o Vary = {xg, x5}, Varg = {xq,xq,,

Xas Xsts Xdsts Xass Xdss €dss €dws ed}, Varw = {-xwu
X, ew}, Vary, = {xs,}, Var, = {xu,, %w,,
ew}, Vars, = {x.},
Vare, = {xc, s;sXc;, 5, Xey, wis Xer,wys €6, > 1| <0<k,
Var,, = {x,;},1 <i <k,
Varw,» = {xw,,wpxw,»,w,,a ew,-}; 1 <i< ka
o Vari(0) = 0,i € {s,w,s.} UUF_ | {cirsi wi},
Vardel] (0) = 100, Vard,.(O) =0,i€ Vary \ {ed}; 5
Varg, (0) = 100, Var,,(0) = 0,i € Varg \ {eq};
Pry={0-x; x5, — x5, + 1lx, };
Pry = {not(xy,3) - x4, + eq(xs,3) - ((xg, + |xas])
58N (Xas))esy — 1%,
not(xy,3) - x4 + eq(xg,3) - ((xq, + |xas|)
SgN(—Xas))e, — 115,
gt(ana 0) * Xas egs - 1‘xasa
xd[|("zlw - 1|x8‘19
xd,<|ed,‘, - 1|xS,<a
€ds * €dw * 0|e,(- 1|eds + 1|9dw>
not(xy, — xg4,,0) X“;l:;”’l + eq(xq, — x4,,0) - x5 +
x,-0 eqw 1|xay
not(x4, — x4, 0) -~
'-xas|edw - llana * Xas Caw
not(x4, — x4,,0) - Hﬁ“ 3+ eq(xq, — x4,,0) - xgs +
Xds * O|e{1w - l|-dea
eq(xg, 1) -2 + eq(xg, 2) - not(xgs,0) - 2 + eq(xs,2)
-eq(xgst,0) -3 + eq(xy,3) - gt(x45,0) - 3 + eq(xsr,3)
'QQ(xdsta O) . 0|edA - 1|xst» Xg -0+ 1|edw - l‘xsta
Xase - 0 + 1801, — 1|xgs,
eq(xs,2) - gt(xas, 0) + (xgr — 1) + eq(xg, 1)
Xdst|egy — 1|xdsl»
eq(xs,3) - gt(x4s, 0) - (xgs — 1) + not(xy,3)
Xdsley — 1lXas;
Prw = {xsc *Xw e, — 1|xd/a
S o) - X, le, — 1xg }s
X5, Xw, le, — 1]xd,
f(xw,-) “Xselew =7 1|xdr}
(f (6w,) - f () - x5, - 100[e, — 1]eas,
(not(x,,, 0) - not(x,,,0)) - x,, - 100, — 1lea;
Pry, = {x;, = lxg. };

+ eq(xdr - xd[,- 0)

— 1]y,

8 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

Pre, = {xc..s5 * Xeom Xsi>

e, 1

x5}, 1 <i<k
PrSi = {3xsi.i - 1|x5'i,i + 1|xCi~Sl + 1|xCi~A'r}’1 < i g k:

Pry, = {2xy, w,

Xei,sr ™ Xy, wy e, 1

ey, 7 l)xm,w'z + e, w

—1

X, w, X, + UXew 1o 1 <i< ks

€y
Wi

As observed, the main difference in the membrane’s struc-
ture is made by the new region called direction. Next we
present the meaning of the variables used in it:

® x4 and x4 represent directionLeft and direction
Right;
x, and x,, represent angle and angleStep;
Xas: and xgg represent distance and distanceStep;
xg represents the state of the simulated finite state
machine

4.3. Extended refined model

Experiments carried out with the second model proved
that when the robot approaches perpendicularly the obsta-
cle, it remains locked into that obstacle. This limitation is
caused by the values of weights, which have values of
opposite sign. This situation can be easily explained by
the position of the proximity sensors that are facing the
obstacle perpendicularly.

To solve this problematic behavior we introduced 11,
a model with the same membrane structure as I, but
containing two more production functions inside Weight
compartment. These functions are distributed to
directionRight and directionLeft variables, as follows:

directionLeft =
gt(|weightLeft|, 0)-
cruiseSpeed - 0

eq(|weightLeft|, |weightRight|)-
gt(|weightRight|, 0) - weightLeft-

directionRight = eq(|weightLeft|, |weightRight|)-
gt(|weightLeft|,0)- gt(|weightRight|,0) - weightRight - 0 +
cruiseSpeed

In this way, we ensure that the robot will not get stuck
when perpendicularly facing an obstacle, as the speed of
the right wheel (guided by directionRight variable) will
move the robot to the left.

An interesting step would be to automatically decide
what direction to follow in this situation (e.g., if an obsta-
cle is near on the left, a better decision should be to acti-
vate the directionLeft variable, thus moving the robot to
the right).

4.4. Linear regression-based model

One of the most striking limitations of all the previous
models was the empirical nature of weights. Choosing the

Table I. Functions used in the model.
sgn(x) I, if x=1
)0, ifx=0

=0 T e

not(x, Lif x %y
not(x,y) = ¢ 0,otherwise

gt(x, y) l,if x>y
gt(x,y) = { 0,otherwise

eq(x, y) l,if x=y
eq(x,y) = 0,otherwise

values of these parameters in a “‘trial and error” manner,
taking into consideration that values of opposite sign
should be assigned to each sensor value, can lead to con-
vincing results, as we can observe looking at the previous
models. Nevertheless, the choice of these parameters can
be made using linear regression.

Taking into consideration the values returned by apply-
ing linear regression to the data retrieved using the obstacle
avoidance Webots controller, we obtained a model with a
simplified structure, implementing the linear relationship
between a dependent value and six independent values.
Before introducing the formal definition of the model, let
us present this relationship:

n
leftSpeed = ay + E a; - prox;
i=1

(16)

rightSpeed = by + Z b; - prox;

i=1

(17)

The above equations, two first-degree polynomials,
describe the relationship between the instantaneous speed
of the wheels and the values retrieved from the proximity
sensors. Analyzing the linear regression model, in each
equation we have one dependent value
(leftSpeed, rightSpeed) and n independent values, repre-
senting the values retrieved from each proximity sensor,
Prox;.

As mentioned earlier in this section, this model has a
simpler structure which will be discussed next, after intro-
ducing the model as follows:

Iy, = (m,H, u, (Vary, Pry, Var(0)), ...,

(Vary, Pry,, Vary,(0))) (18)

where

* m=k+4,k=6; ,
* H={s,pLprc} UU,‘:I{SI'};

Bobe et al.

Table 2. Experimental results.

Test type Iy, Iy, Iy, Iy, g
Arena with obstacles Failed Passed Passed Passed Passed
Corridor straight Failed Failed Failed Passed Passed
Corridor angle Failed Passed Failed Passed Passed
Square straight Failed Failed Passed Passed Passed
Square angle Failed Passed Passed Passed Passed
Road | Failed Passed Passed Failed Passed
Road 2 Failed Passed Passed Passed Passed
Road 3 Failed Passed Passed Failed Passed
Road 4 Passed Passed Passed Failed Passed
po= s, - Do 0 0,5 well as their results. Considering the way we defined and
Vars = {xs,, x5, }Vars, = {x;, i}, 1 <i <k, integrated the models, these simulation scenarios guided
Var, = {a;,e,},0 <i<k, us to refine intermediate variants of the model based on
Var,, = {bi,ep},0 <i <k, the results.
Var. = {xs,.1,e.}, 1 <i<k; In this experiment we opted for four scenarios and all
o Vary(0) = 0,i € {s.pr.pc} UUF_ | {si}; of them are defined by the type of the area E-puck needs
o Pry={0-x;, x;, — lx, + llxg }; to go through. These are introduced as follows:
o Pri={2-xy,;— llxg i+ 1|, i}
o Pr, ={aile, = l|a;},0<i <k ® g circular arena with seven obstacles
o Pry = {bile, 5 1b:},0 <i < k; e corridors
o Pro={aot Y a ® asquare
[]

'xs,,,i|ec - 1|x§; %0 + Z b; 'xsv,l"ec - 1|x51}
i=1

The meaning of the variables from the model is the
following:

® X, and x,, from the region s represent leftSpeed and
rightSpeed,

e for each proximity sensor, prox;, a compartment is
defined, namely s;, containing a single variable,
Xs,,i» 1 <i< k’

e the parameters values, a;, b;, 0 <i <k, are then
persisted inside p, and p; compartments;

® X, ; represents the actual sensor values and is mul-
tiplied with the parameter values inside ¢
compartment.

11, describes the membrane structure of the model, con-
sisting of 10 membranes, one for each sensor (we used six
proximity sensors placed radially at the frontal part of the
robot), one for the speed, two for the parameters of the left
and right sensors values, and one for computing the speed of
each wheel. We used enzymes inside the parameter mem-
branes in order to execute each rule which persists the values
of the parameters. These parameters are then used to simul-
taneously execute (also in the presence of an enzyme) the
formulas presented in 10 and 11 inside the compute region.

5. Simulation results

This section illustrates the simulation and testing phase,
presenting scenarios designed to challenge the robot as

roads generated by AmbieGen

The first three scenarios were created in a simple man-
ner, using the areas that E-puck should cover, being
defined using Webots-embedded shapes. For the first one
we used seven boxes as obstacles, having uniform dimen-
sions of 20 X 20 X 20 cm. For the last scenario, we
used AmbieGen and then selected roads with different
aspects. Some generation parameters, such as map size or
generation time can be easily set from the command line,
when using the tool. Other types of parameters (e.g., mini-
mum distance of a generated road, maximum distance to
go straight during a road) are constant values in the source
code and are easily configurable. More details about
AmbieGen were presented in the study by Bobe et al.*
and Gambi et al.>

As mentioned before, this approach encapsulates four
main types of scenarios, a circular arena with obstacles, a
corridor, a square, and roads generated by AmbieGen. For
corridor and square we simulated two situations. In the
first situation, the robot starts in a straight line from the
middle of the corridor or from the middle of the square.
For simplicity, let us call this types of tests corridor
straight and square straight. The other situation assumes
that the robot also starts from the middle of the corridor,
respectively square, but with an angle of 15°. Let us refer
to these test types as corridor angle and square angle.

Table 2 contains the simulation results for each model
instance, starting with the basic one, II;,. This table was
taken from the initial conference article?’ and extended
with the results for I1y,. For a better understanding, we

10 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

Circular arena with

obstacles Corridor

Road 1 Road 3

Road 4

Figure 2. Test cases as represented in Webots.

consider necessary to include it in the actual version. It
presents the test types presented in the above paragraph
and four roads generated by AmbieGen and imported to
Webots. We chose these roads from a larger suite, opting
for different curvatures in order to better observe the beha-
vior of each model.

When analyzing the experimental results, we noticed
that the basic model, I1,,,, has the worst performance com-
pared to the other four models. This basic model passed
just one test, Road 4, which is the simplest one (as pre-
sented in Figure 2).

Another observation that can be extracted from the
experimental results recorded in Table 2 is that the second
model, II),, has an improved performance in terms of
passing the road tests. The improvement consists in a rota-
tion that is performed when the road is curved (i.e., the
proximity sensors detect an obstacle). Additional road tests
were added to.>

The refocusing movement added to the behavior of the
third model, I1),,, conducted to a natural movement on the
roads, all the roads being also passed for this model.
Nevertheless, it can be observed that this modification of
the membrane structure (with the addition of the mem-
brane direction) made IIy, to fail the corridor angle chal-
lenge, but pass the square straight, failed by Iy, . 11y,
came with an improvement in passing the corridor and
square tests, due to the property of moving even if the
obstacle is in the front of the robot (placed perpendicu-
larly), the situation when the robot gets stuck in front of

Table 3. Models performance on road tests.

Test type Iy, Iy, 1y, Iy, Iy,

Set |
Set 2
Set 3
Set 4
Set 5
Total

[eNeoNoNoNoNe)
N oo
N oot
VT WOOMNMNO
N oo

an obstacle being handled. However, the adjustments
made came with a few disadvantages in passing road tests,
the robot moving to the left and failing the test at the
moment the robot direction is perpendicular to one of the
borders. In many instances, this scenario was frequently
observed, serving as the underlying cause for the model’s
failure to pass three out of the four road test examples.

By analyzing the results produced by II);, we can
affirm that even if this test cases were designed to trigger
possible limitations of the model involved, the linear
regression-based model passed all the tests. Figure 2 illus-
trates the experimental tests discussed above. A video rep-
resentation of each model performance on these tests can
be found in the URL provided.”’

As stated in the ‘““Methodology Description and
Research Environment” section, we can divide our experi-
ments into two different types, based on their purpose.
The above presented were designed to highlight the limita-
tions of each model instance. Next, we introduce the sec-
ond stage of simulations, aimed to demonstrate the
validity of each model version.

Considering a higher number of tests, Table 3 illus-
trates the results obtained after running five sets of tests
generated by varying parameters of road generation in
AmbieGen. Thus, starting from small values, each set used
incremented values of the following three parameters:
minimum distance of a generated road, maximum distance
to go straight during a road, and the map size. The values
transmitted to AmbieGen for these parameters are
expressed in meters. After running the tool with different
values for this three parameters, we obtained 25 roads with
various characteristics, 5 for each set. The parameters
defining each set are the following:

Set1 : (min_len :
Set2 : (min_len :
Set3 : (min_len :

5, max_len : 15, map_size : 150)
10, max_len : 30, map _size : 200)
15, max_len : 40, map_size : 400)
Set4 : (min_len : 20, max_len : 60, map_size : 500)
Set5 : (min_len : 100,

max_len : 150, map_size : 1000)

Highlighting the observations derived from the data pre-
sented in the above table, we can conclude that ITj, has

Bobe et al.

Table 4. Performance metrics of the models.

Model VarN ProgN Road2T Double—Road2T. Increase (%)
Iy, 47 33 120 232 93
Iy, 54 52 130 242 86
Hy, 54 54 136 238 75
y, 28 23 159 298 87

the worst performance, being unable to pass roads with
curves. Even if the model was able to traverse a consider-
able part of some road tests, the model failed to pass the
curves. As expected, I1),, passed all the tests, the reason
that led us to design 11, being the “‘zig-zag” motion of
the robot during the tests which tends to seem unnatural.
Next, we can observe that Iy, also passed all the tests,
but its extension, IIjs,, encountered real problems. This
can be explained by its static nature as when perpendicu-
larly approaching a road border and then moving to the
left, often ending up blocked in the margins.

Our last model, IT),, came as a better model, apart from
passing all the tests, having a visibly simpler structure than
the previous ones. Also, the empirical component has been
excluded, the parameter values being determined using an
elaborate heuristic.

5.1. Performance metrics

We have made some more experiments with respect to
some performance metrics. We have considered one of the
tests previously discussed, Road 2 in Figure 2. Only mod-
els I1y;,,2 < i < 5, are considered, as the first model fails
to run the test and this is just the starting model utilized to
develop the others. For each of these four models, the fol-
lowing performance metrics are defined: number of vari-
ables (VarN), number of programs (ProgN), the execution
time for running the Road 2 test as defined above
(Road2T), and for the case of doubling its length
(Double — Road2T). We have also expressed in percen-
tages the increase in time when the road length doubles.
The results of these metrics are presented in Table 4. The
time is expressed in seconds.

One can notice the two metrics expressing the static
values of memory used by the four models, defined by the
number of variables and programs, VarN and ProgN,
respectively, are consistent with the models’ structure as
presented previously. Model 1, is just a simple extension
of model I1),,. Models I, and I, present a significant
change of the VarN and ProgN, compared to the same val-
ues for I1,,. These changes are explained by the additional
functionality introduced for handling the movement and
direction. Finally, model IT);, shows a minimum of these
values, explained by the conceptual changes of the model
presented above in this paper. The metrics related to the

execution time, both Road2T and Double — Road?2T,
show that going from one model i to the next one, i + 1,
some overhead is introduced and even when static struc-
tural changes are made the time is not reduced. Also, when
the length of the road is increased, their execution time
increases similarly.

6. Conclusions and future work

A methodology based on a test-driven approach has been
introduced in this paper. The methodology entails the cre-
ation of new model instances based on relevant simula-
tions that highlight the behavior of each version of the
model. As we already introduced four variants of model in
the conference paper,?’ this article presented the working
heuristic, as well as a new performant instance of the
model. The testing stage has also been refined, generating
more road tests with different characteristics by varying
the parameters of AmbieGen, the search-based software
testing tool. As stated above, the last version of the model,
which was introduced in this paper, exhibits a great num-
ber of advantages, including the performance during the
test stage, but also the simple structure and the non-
empirical manner of setting the weights.

In terms of further development, we note the possibility
of exploring other types of P systems applied in robotics.
Another objective is to dynamically assign weight values
during the road test, guiding the robot to take a decision
when it is close to an obstacle and another is nearby.
Furthermore, we will explore the potential for overcoming
the limitations imposed by existing tools for simulating
other types of P systems.

Funding

This research received no specific grant from any funding agency
in the public, commercial, or not-for-profit sectors.

ORCIDiD

Radu Traian Bobe (2} https://orcid.org/0009-0005-6611-3176

References

1. Padun G. Membrane computing: an introduction. Cham:
Springer Science & Business Media, 2002.

Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

10.

12.

13.

14.

15.

16.

17.

18.

19.

Paun G, Rozenberg G and Salomaa A (eds). The Oxford
handbook of membrane computing. Oxford: Oxford
University Press, 2010.

Zhang G, Pérez-Jiménez MJ and Gheorghe M. Real-life
applications with membrane computing. Cham: Springer,
2017.

Yu W, Wu J, Chen Y, et al. Fuzzy tissue-like P systems with
promoters and their application in power coordinated control
of microgrid. J Membr Comput 2023; 5: 1-11.
Valencia-Cabrera L and Song B. Tissue P systems with pro-
moter simulation with MeCoSim and P-lingua framework. J
Membr Comput 2020; 2: 95-107.

de la Cruz RTA, Cabarle FGC, Macababayao ICH, et al.
Homogeneous spiking neural P systems with structural plas-
ticity. J Membr Comput 2021; 3: 10-21.

Gheorghe M, Lefticaru R, Konur S, et al. Spiking neural P
systems: matrix representation and formal verification. J
Membr Comput 2021; 3: 133—-148.

Qiu C, Xue J, Liu X, et al. Deep dynamic spiking neural P
systems with applications in organ segmentation. J Membr
Comput 2022; 4: 329-340.

Verlan S, Freund R, Alhazov A, et al. A formal framework
for spiking neural P systems. J Membr Comput 2020; 2:
355-368.

Yu W, Xiao X, Wu J, et al. Application of fuzzy spiking
neural dP systems in energy coordinated control of multi-
microgrid. J Membr Comput 2023; 5: 69-80.

. Zhao S, Zhang L, Liu Z, et al. ConvSNP: a deep learning

model embedded with SNP-like neurons. J Membr Comput
2022; 4: 87-95.

Orellana-Martin D, Valencia-Cabrera L, Riscos-Nufiez A, et
al. P systems with proteins: a new frontier when membrane
division disappears. J Membr Comput 2019; 1: 29-39.

Sosik P. P systems attacking hard problems beyond NP: a
survey. J Membr Comput 2019; 1: 198-208.

Paun G and Paun R. Membrane computing and economics:
numerical P systems. Fundam Inform 2006; 73: 213-227,
http://content.iospress.com/articles/fundamenta-informati-
cae/fi73-1-2-20

Pavel A, Arsene O and Buiu C. Enzymatic numerical P
systems—a new class of membrane computing systems. In:
2010 IEEE fifth international conference on bio-inspired
computing: theories and applications (BIC-TA), Changsha,
China, 23-26 September 2010, pp. 1331-1336. New York:
IEEE. DOI: 10.1109/BICTA.2010.5645071.

Wang X, Zhang G, Neri F, et al. Design and implementation
of membrane controllers for trajectory tracking of nonholo-
nomic wheeled mobile robots. Integr Comput-Aided Eng
2016; 23: 15-30.

Pérez-Hurtado I, Martinez-del Amor MA, Zhang G, et al. A
membrane parallel rapidly-exploring random tree algorithm
for robotic motion planning. Integr Comput-Aided Eng 2020;
27:121-138.

Buiu C and Florea AG. Membrane computing models and
robot controller design, current results and challenges. J
Membr Comput 2019; 1: 262-2609.

Florea AG and Buiu C. PeP—an open-source software simu-
lator of numerical P systems and numerical P systems with
enzymes, 2017, https://github.com/andrei91ro/pep

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Florea AG and Buiu C. Modelling multi-robot interactions
using a generic controller based on numerical P systems and
ROS. In: 2017 9th international conference on electronics,
computers and artificial intelligence (ECAI), Targoviste, 29
June—1 July 2017, pp. 1-6. New York: IEEE.

Khari M and Kumar P. An extensive evaluation of search-
based software testing: a review. Soft Comput 2019; 23:
1933-1946.

Turlea A, Gheorghe M, Ipate F, et al. Search-based testing
in membrane computing. J Membr Comput 2019; 1:
241-250.

Humeniuk D, Antoniol G and Khomh F. AmbieGen tool at
the SBST 2022 tool competition. In: Proceedings of the 15th
workshop on search-based software testing, Pittsburgh, PA,
9 May 2022, pp. 43-46. New York: Association for
Computing Machinery.

George B and Williams L. A structured experiment of
test-driven development. Inf" Softw Technol 2004; 46:
337-342.

Mondada F, Bonani M, Raemy X, et al. The e-puck, a robot
designed for education in engineering. In: Proceedings of
the 9th conference on autonomous robot systems and compe-
titions, Castelo Branco, 7 May 2009, pp. 59-65. Castelo
Branco: Instituto Politécnico de Castelo Branco (IPCB).
Michel O. Cyberbotics Ltd. Webots™: professional mobile
robot simulation. Int J Adv Robot Syst 2004; 1: 5.

Bobe RT, Gheorghe M, Ipate F, et al. Test-driven simulation
of robots controlled by enzymatic numerical P systems mod-
els. In: Guisado-Lizar JL, Riscos-Nufiez A, Moron-
Fernandez MJ, et al. (eds) Simulation tools and techniques.
Cham: Springer Nature, pp. 56—69.

EAI SIMUtools 2023, https://simutools.eai-conferences.org/
2023/

Bobe RT, Ipate F and Niculescu IM. Modelling and search-
based testing of robot controllers using enzymatic numerical
P systems. In: Cheval H, Leustean L and Sipos A (eds)
Proceedings 7th symposium on working formal methods,
Bucharest, Romania, 21-22 September 2023, Electronic pro-
ceedings in theoretical computer science, vol 389. Waterloo,
NSW, Australia: Open Publishing Association, pp. 1-10.
Kavitha S, Varuna S and Ramya R. A comparative analysis
on linear regression and support vector regression. In: 2016
online international conference on green engineering and
technologies (IC-GET), Coimbatore, India, 19 November
2016, pp. 1-5. New York: IEEE.

GroB3 J. Linear regression, vol 175. Cham: Springer Science
& Business Media, 2003.

Maulud D and Abdulazeez AM. A review on linear regres-
sion comprehensive in machine learning. J Appl Sci Technol
Trends 2020; 1: 140-147.

Stoter FR, Chakrabarty S, Edler B, et al. Classification vs.
regression in supervised learning for single channel speaker
count estimation. In: 2018 IEEE international conference on
acoustics, speech and signal processing (ICASSP), Calgary,
AB, Canada, 1520 April 2018, pp. 436-440. New York:
IEEE.

Dielman TE. Adpplied regression analysis for business and
economics. Pacific Grove, CA: Duxbury/Thomson Learning,
2001.

Bobe et al.

13

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Chavez-Olivares CA, Reyes-Cortes F, Gonzalez-Galvan EJ,
et al. Experimental evaluation of parameter identification
schemes on a direct-drive robot. Proc Inst Mech Eng Part 1
J Syst Control Eng 2012; 226: 1419—1431.

Sigaud O, Salaiin C and Padois V. On-line regression algo-
rithms for learning mechanical models of robots: a survey.
Robot Auton Syst 2011; 59: 1115-1129.

Nguyen-Tuong D and Peters J. Model learning for robot con-
trol: a survey. Cognit Process 2011; 12: 319-340.

Bona B and Curatella A. Identification of industrial robot
parameters for advanced model-based controllers design. In:
Proceedings of the 2005 IEEE international conference on
robotics and automation, Barcelona, 1822 April 2005. New
York: IEEE.

Lizana J, Perejon A, Sanchez-Jimenez PE, et al. Advanced
parametrisation of phase change materials through kinetic
approach. J Energy Storage 2021; 44: 103441.

Quan X, Luo D, Yang Q, et al. Multidimensional graph
transformer networks for trajectory prediction in urban road
intersections. J Membr Comput. Epub ahead of print 9 July
2024. DOI: 10.1007/s41965-024-00161-0.

Aerts A, Reniers M and Mousavi MR. Model-based testing
of cyber-physical systems. In: Song H, Rawat DB, Jeschke
S, et al. (eds) Cyber-physical systems. Amsterdam: Elsevier,
2017, pp. 287-304.

Turlea A. Search based model in the loop testing for cyber
physical systems. In: 2018 IEEE 16th international confer-
ence on embedded and ubiquitous computing (EUC),
Bucharest, 2931 October 2018, pp. 22-28. New York:
IEEE.

McMinn P. Search-based software testing: past, present and
future. In: 2011 IEEE fourth international conference on
software testing, verification and validation workshops,
Berlin, 21-25 March 2011, pp. 153—163. New York: IEEE.
Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiob-
jective genetic algorithm: NSGA-II. [EEE Trans Evolut
Comput 2002; 6: 182—-197.

Arrieta A, Wang S, Markiegi U, et al. Search-based test case
generation for cyber-physical systems. In: 2017 IEEE con-
gress on evolutionary computation (CEC), Donostia, 5-8
June 2017, pp. 688—697. New York: IEEE.

Togelius J, Champandard AJ, Lanzi PL, et al. Procedural
content generation: goals, challenges and actionable steps.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
DOI:10.4230/DFU.Vo0l6.12191.61

Gambi A, Mueller M and Fraser G. Automatically testing
self-driving cars with search-based procedural content gener-
ation. In: Proceedings of the 28th ACM SIGSOFT interna-
tional symposium on software testing and analysis, Beijing,
China, 15—-19 July 2019, pp. 318-328. New York: ACM.
Arnold J and Alexander R. Testing autonomous robot control
software using procedural content generation. In: Computer
safety, reliability, and security: 32nd international confer-
ence, SAFECOMP 2013, Toulouse, 2427 September 2013,
pp. 3344, proceedings 32. Cham: Springer.

49. Webots reference manual, https://cyberbotics.com/doc/refer-
ence/proto

50. Humeniuk D, Khomh F and Antoniol G. AmbieGen: a
search-based framework for autonomous systems testing.
arXiv preprint arXiv:230101234, 2023. DOI:10.48550/
arXiv.2301.01234

51. Whitley D, Rana S, Dzubera J, et al. Evaluating evolutionary
algorithms. Artif Intell 1996; 85: 245-276.

52. Webots obstacle avoidance controller, https:/cyberbotics.-
com/doc/guide/tutorial-4-more-about-controllers

53. Github project, https:/github.com/radubobe/Research/tree/
main/Modelling%20and%?20testing%20robot%
20controllers%20using%20ENPS

54. Hellstrom T. Kinematics equations for differential drive and
articulated steering. Umea University, 2011, https://
www8.cs.umu.se/kurser/SDV122/HT13/material/Hellstrom-
ForwardKinematics.pdf

55. Gambi A, Jahangirova G, Riccio V, et al. SBST tool compe-
tition 2022. In: Proceedings of the 15th workshop on search-
based software testing, Pittsburgh, PA, 9 May 2022, pp. 25—
32. New York: IEEE.

56. Github simulation results folder, https://github.com/radu-
bobe/Research/tree/main/
Modelling%20and%20testing%20robot%20controllers%20-
using%20ENPS/Simulation%?20results

57. Simulation of E-puck controlled by enzymatic numerical P
systems models in Webots, https://youtu.be/FA7snrqaKKs

Author biographies

Radu Traian Bobe is a PhD student and University
Assistant in the Department of Computer Science, Faculty
of Mathematics and Computer Science, University of
Bucharest.

Marian Gheorghe is a Professor Emeritus of
Computational Models and Software Engineering at
University of Bradford. He was Head of the Department
of Computer Science (2018-2020).

Florentin Ipate is a Full Professor in the Department of
Computer Science, Faculty of Mathematics and Computer
Science, University of Bucharest. He is an editor of
Springer’s Journal of Membrane Computing and also
member of the steering committee of Conference on
Membrane Computing and Bulletin committee of the
International Membrane Computing Society.

lonut Mihai Niculescu is a researcher and computer
scientist. His PhD thesis was distinguished with The PhD
Thesis of the Year 2018 by the International Membrane
Computing Society (IMCS).

